High-dimensional stochastic optimization with the generalized Dantzig estimator

نویسنده

  • Karim Lounici
چکیده

We propose a generalized version of the Dantzig selector. We show that it satisfies sparsity oracle inequalities in prediction and estimation. We consider then the particular case of high-dimensional linear regression model selection with the Huber loss function. In this case we derive the sup-norm convergence rate and the sign concentration property of the Dantzig estimators under a mutual coherence assumption on the dictionary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical and Computational Tradeoffs of Regularized Dantzig-type Estimator∗

Nesterov’s smoothing technique has been widely applied to solve non-smooth optimization problems involving high dimensional statistical models. However, existing theory focuses more on its computational properties rather than statistical properties. This paper bridges this gap by studying a family of regularized Dantzig-type estimators. For these estimators, we show that the smoothing technique...

متن کامل

The Discrete Dantzig Selector: Estimating Sparse Linear Models via Mixed Integer Linear Optimization

We propose a new high-dimensional linear regression estimator: the Discrete Dantzig Selector, which minimizes the number of nonzero regression coefficients, subject to a budget on the maximal absolute correlation between the features and residuals. We show that the estimator can be expressed as a solution to a Mixed Integer Linear Optimization (MILO) problem, a computationally tractable framewo...

متن کامل

Wavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables

We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...

متن کامل

George B . Dantzig 1914 – 2005

Stanford News Service George B. Dantzig is well known as the father of linear programming. This “underestimates his paternal accomplishments” as is compellingly illustrated in the recent book [3] entitled The Basic George B. Dantzig. Dantzig made either fundamental or founding contributions in mathematical statistics, linear programming, network optimization, integer programming, nonlinear prog...

متن کامل

Fast Restoration Dantzig Selection for Censored Data

Dimension reduction, modeland variable selectionhavebecome ubiquitous concepts in modern statisticalscience. Thispaperis concernedwith simultaneous estimation and variable selectionin thelinear model orleast-squares setup,principlebuildingblocks of complete-data model selection techniques. In contrast to the complete-data setup, we considerthecommonsituationwheretheoutcomesmayberight-censored. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008